[1]杨 榛,张晓盈,梁一平,等.我国股票市场走势历史类似性的研究[J].金融教育研究,2017,(01):23-30.
 YANG Zhen,ZHANG Xiaoying,LIANG Yiping,et al.Research on the Historical Similarity of the Tendency in Chinese Stock Market[J].,2017,(01):23-30.
点击复制

我国股票市场走势历史类似性的研究()
分享到:

《金融教育研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年01期
页码:
23-30
栏目:
出版日期:
2017-01-01

文章信息/Info

Title:
Research on the Historical Similarity of the Tendency in Chinese Stock Market
作者:
杨 榛 张晓盈 梁一平 朱 洪
江西师范大学 a.财政金融学院; b.数学与信息科学学院,江西 南昌 330022
Author(s):
YANG Zhen ZHANG Xiaoying LIANG Yiping ZHU Hong
a.School of Finance; b.School of Mathematics and Information Science,Jiangxi Normal University,Nanchang,Jiangxi 330022,China
关键词:
上证综指 GARCH模型 ARCH模型 波动性 时间序列 趋势分析
Keywords:
Shanghai composite index GARCH model ARCH model volatility time series trend analysis
分类号:
F832.5
文献标志码:
A
摘要:
以股票指数为基础计算股市收益率的波动性,是金融学领域时间序列数据研究的关键指标,也是资产配置和国家政策制定的决策依据。因此,通过模型考证股指波动的历史类似性来检验当前中国股市是否逐步符合半强式有效市场具有研究意义。研究发现,2005年1月—2010年10月和2014年1月—2016年3月的上证综指尽管在形态上具有相似性,但2014-2016年股指波动数据的自回归条件异方差性不如之前显著,说明近年来股指波动情况对前期依赖性更小,预测的有效性比之前有所降低,已经不具有历史类似性,表明我国股票市场已逐步符合半强
Abstract:
We calculate the volatility of stock market returns based on the share index; it is the key indicators of time series data study in the field of finance,also the decision basis of the asset allocation and the national policy making.It has research significance to research on historical similarities of fluctuation of stock index by model,it can check whether the current China’s stock market gradually meet half strong type effective market.The research finds that,Shanghai composite index has the similarity in form between January 2005 to October 2010 and January 2014 to March 2016,but the index fluctuation data of autoregressive conditional heteroscedasticity do not have significant difference.It means that the dependence of the stock index volatility to the preceding period is less; the effectiveness of the prediction is reduced than before; and it has no historical similarities.It shows that Chinese stock market has gradually met the characteristics of the half strong type effective market; and the effectiveness of technical analysis will be significantly reduced.In the long term,value investment will be more effective than trend analysis.

参考文献/References:

[1]Bollerslev T.Generalized autoregressive conditional heteroscedasticity[J].Journal of Econometrics,1986,31(3):307-327.
[2]Jayasinghe P.,AK Tsui.Exchange rate exposure of sectoral returns and volatilities:Evidence from Japanese industrial sectors[J].Pacific Economic Review,2014,19(2):216-236.
[3]E.,Elyasiani,I.,Mansur.Real-Estate Risk Effects on Financial Institutions’ Stock Return Distribution:a Bivariate GARCH Analysis[J].The Journal of Real Estate Finance and Economics,2010,40(1):89-107.
[4]陈守东,俞世典.基于GARCH模型的VaR方法对中国股市的分析[J].吉林大学社会科学学报,2002(4):11-17.
[5]陈盛双,李化想.沪市股指收益率及波动性的实证分析[J].时代金融,2007(8):30-31.
[6]骆珣,吴建红.基于GARCH模型的人民币汇率波动规律研究[J].数理统计与管理,2009(2):295-300.
[7]刘玄,冯彩.2005年以来我国股票市场波动特征研究——基于GARCH族模型[J].经济论坛,2009,(2):42-45.
[8]黄后川,陈浪南.中国股票市场波动率的高频估计与特性分析[J].经济研究,2003(02):75-82.
[9]徐正国,张世英.高频时间序列的改进“已实现”波动特性与建模[J].系统工程学报,2005(04):344-350.
[10]Engle RF.Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J].Econometrica,1982,50(4):987-1007.
[11]Bollerslev T.Generalized autoregressive conditional heteroscedasticity[J].Journal of Econometrics,1986,31(3):307-327.
[12]Anderson T G.Bollerslev T,Diebold F X,et al.Great realizations[J].The Journal of Risk,2000(13):105-108.
[13]陈晓欣.GARCH模型的改进及其在股市波动收益率中的应用[D].长春:长春工业大学,2012.
[14]杨琦.基于ARMA-GARCH模型的股票价格分析与预测[J].数学的实践与认识,2016(6):80-86.
[15]郑振龙,汤文玉.波动率风险及风险价格——来自中国A股市场的证据[J].金融研究,2011(4):143-157.

备注/Memo

备注/Memo:
收稿日期:2016-11-21作者简介:杨 榛(1992-),男,江苏东台人,硕士研究生,研究方向为企业会计与财务管理; 张晓盈(1966-),女,黑龙江宝清人,博士,教授,硕士生导师,研究方向为产业经济与金融创新、新能源产业集群; 梁一平(1994-),女,河南新乡人,硕士研究生; 朱 洪(1992-),女,江西南昌人,硕士研究生。
更新日期/Last Update: 1900-01-01