[1]闫洪举.金融时间序列数据预测:文献回顾与展望[J].金融教育研究,2021,(03):33-41.
 YAN Hongju.Financial Time Series Prediction:A Literature Review and Prospect[J].,2021,(03):33-41.
点击复制

金融时间序列数据预测:文献回顾与展望()
分享到:

《金融教育研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
33-41
栏目:
金融论坛
出版日期:
2021-05-25

文章信息/Info

Title:
Financial Time Series Prediction:A Literature Review and Prospect
文章编号:
2095-0098(2021)03-0033-09
作者:
闫洪举12
1.中国农业银行 博士后科研工作站,北京 100005; 2.北京大学 经济学院,北京 100871
Author(s):
YAN Hongju12
1.Postdoctoral Research Station of Agricultural Bank of China,Beijing 100005,China; 2.School of Economics,Peking University,Beijing 100871,China
关键词:
时间序列数据 计量经济学 机器学习 深度学习
Keywords:
Time series data Econometric model Machine learning Artificial intelligence
分类号:
F832.29
文献标志码:
A
摘要:
金融时间序列数据具有非线性、非平稳、高噪声等复杂特征,且随着移动互联网、人工智能的快速发展,海量结构化与非结构化数据不断产生,数据间的关联模式日益复杂。在此背景之下,构建科学合理的金融时间序列数据预测模型,充分挖掘金融时间序列数据隐含的重要信息至关重要。为此,在梳理金融时间序列数据预测的计量经济学方法、机器学习算法的基础上,着重分析深度学习应用于金融时间序列数据预测的理论基础与实证应用的相关文献,以期为大数据与人工智能背景下的金融时间序列数据预测以及多学科交叉融合研究提供相关借鉴。
Abstract:
Financial time series data has complex characteristics such as non-linear,non-stationary and high noise.With the rapid development of mobile internet and artificial intelligence,massive structured and unstructured data are constantly generated,and the relation among them is increasingly complex.So,it is very important to build a scientific and reasonable financial time series data prediction model and fully mine the important information hidden in the financial time series data.Compared with econometric model and machine learning,deep learning algorithm,which has achieved great success in image recognition,self-driving,natural language and many other fields of artificial intelligence,is more suitable for financial time series data prediction under the background of big data and artificial intelligence.

参考文献/References:

[1]Abu-Mostafa Y S,Atiya A F.Introduction to financial forecasting[J].Applied Intelligence,1996(3):205-213.
[2]Hall J W.Adaptive Selection of US Stocks with Neural Nets[J].Trading on the Edge:Neural,Genetic,and Fuzzy Systems for Chaotic Financial Markets.New York:Wiley,1994:45-65.
[3]Yule G U.VII.On a Method of Investigating Periodicities Disturbed Series,with Special Reference to Wolfer's Sunspot Numbers[J].Phil.Trans.R.Soc.Lond.A,1927(636-646):267-298.
[4]Mikosch T,Stric C.Nonstationarities in Financial Time Series,The Long-range Dependence,and The IGARCH Effects[J].Review of Economics and Statistics,2004(1):378-390.
[5]池启水.中国石油消费量增长趋势分析——基于ARIMA模型的预测与分析[J].资源科学,2007(5):69-73.
[6]Ediger,V..,Akar,S.Arima Forecasting of Primary Energy Demand by Fuel in Turkey[J].Energy Policy,2007(3):1701-1708.
[7]谷政,张维.基于WAVELET-GARCH组合方法的中国保险深度分析[J].江西科学,2013(3):403-408.
[8]Pai P F,Lin C S.A Hybrid ARIMA and Support Vector Machines Model in Stock Price Forecasting[J].Omega,2005(6):497-505.
[9]Robert F.Engle.Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom inflation[J].Econometrica,1982(4):987-1007.
[10]Bollerslev T.Generalized Autoregressive Conditional Heteroskedasticity[J].Journal of Econometrics,1986(3):307-327.
[11]惠晓峰,柳鸿生,胡伟,等.基于时间序列GARCH模型的人民币汇率预测[J].金融研究,2003(5):99-105.
[12]刘国旗.非线性GARCH模型在中国股市波动预测中的应用研究[J].统计研究,2000(1):49-52.
[13]于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013(S1):341-345.
[14]Taylor G W.Composable,Distributed-State Models for High-Dimensional Time Series[M].University of Toronto,2009.
[15]周志华.机器学习[M].北京:清华大学出版社,2016.
[16]Ture M,Kurt I.Comparison of Four Different Time Series Methods to Forecast Hepatitis A Virus Infection[J].Expert Systems with Applications,2006(1):41-46.
[17]刘海玥,白艳萍.时间序列模型和神经网络模型在股票预测中的分析[J].数学的实践与认识,2011(4):14-19.
[18]Kristjanpoller W,Minutolo M C.Gold Price Volatility:A Forecasting Approach Using the Artificial Neural Network-GARCH model[J].Expert Systems with Applications,2015(20):7245-7251.
[19]Lendasse A,de Bodt E,Wertz V,et al.Non-linear Financial Time Series Forecasting-Application to the Bel 20 Stock Market Index[J].European Journal of Economic and Social Systems,2000(1):81-91.
[20]Guresen E,Kayakutlu G,Daim T U.Using Artificial Neural Network Models in Stock Market Index Prediction[J].Expert Systems with Applications,2011(8):10389-10397.
[21]Tay F E H,Cao L.Application of Support Vector Machines in Financial time Series Forecasting[J].Omega,2001(4):309-317.
[22]李春伟,张骏.基于神经网络的股票中期预测[J].计算机工程与科学,2006(5):115-117.
[23]Wang J Z,Wang J J,Zhang Z G,et al.Forecasting Stock Indices with Back Propagation Neural Network[J].Expert Systems with Applications,2011(11):14346-14355.
[24]Huang W,Nakamori Y,Wang S Y.Forecasting Stock Market Movement Direction with Support Vector Machine[J].Computers & Operations Research,2005(10):2513-2522.
[25]Kim K.Financial Time Series Forecasting Using Support Vector Machines[J].Neurocomputing,2003(1-2):307-319.
[26]徐国祥,杨振建.PCA-GA-SVM模型的构建及应用研究——沪深300指数预测精度实证分析[J].数量经济技术经济研究,2011(2):135-147.
[27]Bustos O,Pomares A,Gonzalez E.A Comparison between SVM and Multilayer Perceptron in Predicting an Emerging Financial Market:Colombian Stock Market[C]//de Innovacion y Tendencias en Ingenieria(CONIITI),2017 Congreso Internacional.IEEE,2017:1-6.
[28]Ahmed N K,Atiya A F,Gayar N E,et al.An Empirical Comparison of Machinelearning Models for time Series Forecasting[J].Econometric Reviews,2010(5-6):594-621.
[29]Kumar M,Thenmozhi M.Forecasting Stock Index Movement:A Comparison of Support Vector Machines and Random Forest[J].Social Science Electronic Publishinl,2006(2):87-102.
[30]Bildirici M,Ersin ÖÖ.Improving Forecasts of GARCH Family Models with the Artificial Neural Networks:An Application to the Daily Returns in Lstanbul Stock Exchange[J].Expert Systems with Applications,2009(4):7355-7362.
[31]Kumar M,Thenmozhi M.Forecasting Stock Index Returns Using ARIMA-SVM,ARIMA-ANN,and ARIMA-random forest hybrid models[J].International Journal of Banking,Accounting and Finance,2014(3):284-308.
[32]熊志斌.ARIMA融合神经网络的人民币汇率预测模型研究[J].数量经济技术经济研究,2011(6):64-76.
[33]张贵生,张信东.基于近邻互信息的SVM-GARCH股票价格预测模型研究[J].中国管理科学,2016(9):11-20.
[34]Bengio Y,LeCun Y.Scaling Learning Algorithms Towards AI[J].Large-scale Kernel Machines,2007(5):1-41.
[35]Lecun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015(3):436-444.
[36]Heaton J B,Polson N G,Witte J H.Deep Learning in Finance[J].arXiv preprint arXiv:1602.06561,2016.
[37]LeCun Y,Bengio Y.Convolutional Networks for Images,Speech,and Time Series[J].The Handbook of Brain Theory and Neural Networks,1995(10):1995.
[38]周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017(6):1229-1251.
[39]Tsantekidis A,Passalis N,Tefas A,et al.Forecasting Stock Prices From the Limit Order Book Using Convolutional Neural networks[C]//Business Informatics(CBI),2017 IEEE 19th Conference on.IEEE,2017,1:7-12.
[40]Sezer O B,Ozbayoglu A M.Algorithmic Financial Trading with Deep Convolutional Neural Networks:Time Series to Image Conversion Approach[J].Applied Soft Computing,2018(70):525-538.
[41]林杰,龚正.基于人工神经网络的沪锌期货价格预测研究[J].财经理论与实践,2017(2):54-57.
[42]Giles C L,Lawrence S,Tsoi A C.Noisy Time Series Prediction Using Recurrent Neural Networks and Grammatical Inference[J].Machine Learning,2001(1-2):161-183.
[43]Hsieh T J,Hsiao H F,Yeh W C.Forecasting Stock Markets Using Wavelet Transforms and Recurrent Neural Networks:An Integrated System Based on Artificial Bee Colony Algorithm[J].Applied Soft Computing,2011(2):2510-2525.
[44]Rather A M,Agarwal A,Sastry V N.Recurrent Neural Network and a Hybrid Model for Prediction of Stock Returns[J].Expert Systems with Applications,2015(6):3234-3241.
[45]Schmidhuber J.Gradient Flow in Recurrent Nets:the Difficulty of Learning Long-Term Dependencies[M].New Jersey:Wiley-IEEE Press,2001.
[46]Sutskever I,Vinyals O,Le Q V.Sequence to Sequence Learning with Neural Networks[C]//Advances in Neural Information Processing Systems.2014:3104-3112.
[47]Bao W,Yue J,Rao Y.A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long-short Term Memory[J].PlOS ONE,2017(7):e0180944.
[48]Fischer T,Krauss C.Deep Learning with Long short-term Memory Networks for Financial Market Predictions[J].European Journal of Operational Research,2018(2):654-669.
[49]Kim H Y,Won C H.Forecasting the Volatility of Stock Price Index:A Hybrid Model Integrating LSTM with Multiple GARCH-type Models[J].Expert Systems with Applications,2018(103):25-37.
[50]谢琪,程耕国,徐旭.基于神经网络集成学习股票预测模型的研究[J/OL].计算机工程与应用:1-8[2019-02-11].http://kns.cnki.net/kcms/detail/11.2127.TP.20190123.1540.012.html.
[51]杨青,王晨蔚.基于深度学习LSTM神经网络的全球股票指数预测研究[J].统计研究,2019(3):65-77.

备注/Memo

备注/Memo:
收稿日期:2020-04-08
作者简介:闫洪举(1987-),山东乐陵人,博士,研究方向为金融经济学。
更新日期/Last Update: 2021-06-10