参考文献/References:
[1]Abu-Mostafa Y S,Atiya A F.Introduction to financial forecasting[J].Applied Intelligence,1996(3):205-213.
[2]Hall J W.Adaptive Selection of US Stocks with Neural Nets[J].Trading on the Edge:Neural,Genetic,and Fuzzy Systems for Chaotic Financial Markets.New York:Wiley,1994:45-65.
[3]Yule G U.VII.On a Method of Investigating Periodicities Disturbed Series,with Special Reference to Wolfer's Sunspot Numbers[J].Phil.Trans.R.Soc.Lond.A,1927(636-646):267-298.
[4]Mikosch T,Stric C.Nonstationarities in Financial Time Series,The Long-range Dependence,and The IGARCH Effects[J].Review of Economics and Statistics,2004(1):378-390.
[5]池启水.中国石油消费量增长趋势分析——基于ARIMA模型的预测与分析[J].资源科学,2007(5):69-73.
[6]Ediger,V..,Akar,S.Arima Forecasting of Primary Energy Demand by Fuel in Turkey[J].Energy Policy,2007(3):1701-1708.
[7]谷政,张维.基于WAVELET-GARCH组合方法的中国保险深度分析[J].江西科学,2013(3):403-408.
[8]Pai P F,Lin C S.A Hybrid ARIMA and Support Vector Machines Model in Stock Price Forecasting[J].Omega,2005(6):497-505.
[9]Robert F.Engle.Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom inflation[J].Econometrica,1982(4):987-1007.
[10]Bollerslev T.Generalized Autoregressive Conditional Heteroskedasticity[J].Journal of Econometrics,1986(3):307-327.
[11]惠晓峰,柳鸿生,胡伟,等.基于时间序列GARCH模型的人民币汇率预测[J].金融研究,2003(5):99-105.
[12]刘国旗.非线性GARCH模型在中国股市波动预测中的应用研究[J].统计研究,2000(1):49-52.
[13]于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013(S1):341-345.
[14]Taylor G W.Composable,Distributed-State Models for High-Dimensional Time Series[M].University of Toronto,2009.
[15]周志华.机器学习[M].北京:清华大学出版社,2016.
[16]Ture M,Kurt I.Comparison of Four Different Time Series Methods to Forecast Hepatitis A Virus Infection[J].Expert Systems with Applications,2006(1):41-46.
[17]刘海玥,白艳萍.时间序列模型和神经网络模型在股票预测中的分析[J].数学的实践与认识,2011(4):14-19.
[18]Kristjanpoller W,Minutolo M C.Gold Price Volatility:A Forecasting Approach Using the Artificial Neural Network-GARCH model[J].Expert Systems with Applications,2015(20):7245-7251.
[19]Lendasse A,de Bodt E,Wertz V,et al.Non-linear Financial Time Series Forecasting-Application to the Bel 20 Stock Market Index[J].European Journal of Economic and Social Systems,2000(1):81-91.
[20]Guresen E,Kayakutlu G,Daim T U.Using Artificial Neural Network Models in Stock Market Index Prediction[J].Expert Systems with Applications,2011(8):10389-10397.
[21]Tay F E H,Cao L.Application of Support Vector Machines in Financial time Series Forecasting[J].Omega,2001(4):309-317.
[22]李春伟,张骏.基于神经网络的股票中期预测[J].计算机工程与科学,2006(5):115-117.
[23]Wang J Z,Wang J J,Zhang Z G,et al.Forecasting Stock Indices with Back Propagation Neural Network[J].Expert Systems with Applications,2011(11):14346-14355.
[24]Huang W,Nakamori Y,Wang S Y.Forecasting Stock Market Movement Direction with Support Vector Machine[J].Computers & Operations Research,2005(10):2513-2522.
[25]Kim K.Financial Time Series Forecasting Using Support Vector Machines[J].Neurocomputing,2003(1-2):307-319.
[26]徐国祥,杨振建.PCA-GA-SVM模型的构建及应用研究——沪深300指数预测精度实证分析[J].数量经济技术经济研究,2011(2):135-147.
[27]Bustos O,Pomares A,Gonzalez E.A Comparison between SVM and Multilayer Perceptron in Predicting an Emerging Financial Market:Colombian Stock Market[C]//de Innovacion y Tendencias en Ingenieria(CONIITI),2017 Congreso Internacional.IEEE,2017:1-6.
[28]Ahmed N K,Atiya A F,Gayar N E,et al.An Empirical Comparison of Machinelearning Models for time Series Forecasting[J].Econometric Reviews,2010(5-6):594-621.
[29]Kumar M,Thenmozhi M.Forecasting Stock Index Movement:A Comparison of Support Vector Machines and Random Forest[J].Social Science Electronic Publishinl,2006(2):87-102.
[30]Bildirici M,Ersin ÖÖ.Improving Forecasts of GARCH Family Models with the Artificial Neural Networks:An Application to the Daily Returns in Lstanbul Stock Exchange[J].Expert Systems with Applications,2009(4):7355-7362.
[31]Kumar M,Thenmozhi M.Forecasting Stock Index Returns Using ARIMA-SVM,ARIMA-ANN,and ARIMA-random forest hybrid models[J].International Journal of Banking,Accounting and Finance,2014(3):284-308.
[32]熊志斌.ARIMA融合神经网络的人民币汇率预测模型研究[J].数量经济技术经济研究,2011(6):64-76.
[33]张贵生,张信东.基于近邻互信息的SVM-GARCH股票价格预测模型研究[J].中国管理科学,2016(9):11-20.
[34]Bengio Y,LeCun Y.Scaling Learning Algorithms Towards AI[J].Large-scale Kernel Machines,2007(5):1-41.
[35]Lecun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015(3):436-444.
[36]Heaton J B,Polson N G,Witte J H.Deep Learning in Finance[J].arXiv preprint arXiv:1602.06561,2016.
[37]LeCun Y,Bengio Y.Convolutional Networks for Images,Speech,and Time Series[J].The Handbook of Brain Theory and Neural Networks,1995(10):1995.
[38]周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017(6):1229-1251.
[39]Tsantekidis A,Passalis N,Tefas A,et al.Forecasting Stock Prices From the Limit Order Book Using Convolutional Neural networks[C]//Business Informatics(CBI),2017 IEEE 19th Conference on.IEEE,2017,1:7-12.
[40]Sezer O B,Ozbayoglu A M.Algorithmic Financial Trading with Deep Convolutional Neural Networks:Time Series to Image Conversion Approach[J].Applied Soft Computing,2018(70):525-538.
[41]林杰,龚正.基于人工神经网络的沪锌期货价格预测研究[J].财经理论与实践,2017(2):54-57.
[42]Giles C L,Lawrence S,Tsoi A C.Noisy Time Series Prediction Using Recurrent Neural Networks and Grammatical Inference[J].Machine Learning,2001(1-2):161-183.
[43]Hsieh T J,Hsiao H F,Yeh W C.Forecasting Stock Markets Using Wavelet Transforms and Recurrent Neural Networks:An Integrated System Based on Artificial Bee Colony Algorithm[J].Applied Soft Computing,2011(2):2510-2525.
[44]Rather A M,Agarwal A,Sastry V N.Recurrent Neural Network and a Hybrid Model for Prediction of Stock Returns[J].Expert Systems with Applications,2015(6):3234-3241.
[45]Schmidhuber J.Gradient Flow in Recurrent Nets:the Difficulty of Learning Long-Term Dependencies[M].New Jersey:Wiley-IEEE Press,2001.
[46]Sutskever I,Vinyals O,Le Q V.Sequence to Sequence Learning with Neural Networks[C]//Advances in Neural Information Processing Systems.2014:3104-3112.
[47]Bao W,Yue J,Rao Y.A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long-short Term Memory[J].PlOS ONE,2017(7):e0180944.
[48]Fischer T,Krauss C.Deep Learning with Long short-term Memory Networks for Financial Market Predictions[J].European Journal of Operational Research,2018(2):654-669.
[49]Kim H Y,Won C H.Forecasting the Volatility of Stock Price Index:A Hybrid Model Integrating LSTM with Multiple GARCH-type Models[J].Expert Systems with Applications,2018(103):25-37.
[50]谢琪,程耕国,徐旭.基于神经网络集成学习股票预测模型的研究[J/OL].计算机工程与应用:1-8[2019-02-11].http://kns.cnki.net/kcms/detail/11.2127.TP.20190123.1540.012.html.
[51]杨青,王晨蔚.基于深度学习LSTM神经网络的全球股票指数预测研究[J].统计研究,2019(3):65-77.